If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-0.8X-15.2=0
a = 1; b = -0.8; c = -15.2;
Δ = b2-4ac
Δ = -0.82-4·1·(-15.2)
Δ = 61.44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-0.8)-\sqrt{61.44}}{2*1}=\frac{0.8-\sqrt{61.44}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-0.8)+\sqrt{61.44}}{2*1}=\frac{0.8+\sqrt{61.44}}{2} $
| 3(2x-1)=10x-11 | | 3x+15-9=2(x+2,) | | 8x-1=-16 | | 30-8x=7(7x+2) | | 8-5x+6x=-8 | | -4(x)=5x-12 | | x-(-45)=-12 | | 3(2x+9)=-43+64 | | 2(4t-5)=-6t-3. | | 21-9r=-24 | | -.2x-1=10-.4x | | 99=9(b+5) | | 16×-7=5+13x | | 16+x=125 | | 2(-3x+4)=12 | | 0.25(x-3)=7 | | n+2=-2n+8 | | x-9=3x-35 | | 2(8+4p)=56 | | p/6-8=22 | | z/3-2=7 | | 16x−6+13x+9=74 | | 3^x=344 | | 122=10x-4.9x^2 | | q+9=3q+1 | | 1(x+4)=4x+(-5) | | q+9=3q+- | | 4(1+2b)-3=-34+8b | | |x|-9=13 | | 8x-54=18x+6 | | -v/8=2 | | y/2+7=17 |